
Abstract- Although a large number of studies on cardiac
electrical properties have been conducted, it remains difficult
to integrate all fragmented data into one unified framework.
As an approach to this, we developed a large-scale (6 x 106

elements) three-dimensional simulator of cardiac electrical
activity based on human ventricular geometry and
experimentally derived ionic channel models. This simulator
has the advantages over previous simulators in that ventricular
fibrillation can be induced with clinical programmed
extrastimulation, fibrillation can be induced more easily by
extrastimulation at right ventricular outflow tract as in clinical
situation, and it is possible to examine the contribution of early
afterdepolarization to arrhythmogenecity in patients with e.g.,
long QT syndrome. These advantages indicate that our
simulator is useful in supporting a wide range of clinical
studies of arrhythmias.
Keywords- Fatal arrhythmia, Computer simulation, Ionic
channel model*

I. INTRODUCTION

Various types of arrhythmias occur as a result of
abnormalities in cardiac electrical properties. These
properties include those at different scale levels, from gene,
ionic channels, and myocardial cells, up to the level of the
heart as an organ. All of these are likely to contribute to the
genesis of arrhythmias. To combat fatal arrhythmias, a large
number of studies on cardiac electrical properties and
activities have been conducted. Despite such plentiful
information, it is not possible to reconstruct the electrical
activity of a heart as a whole, or to predict the occurrence of
clinical arrhythmias. This inability has resulted in drugs
paradoxically aggravating the occurrence of fatal
antiarrhythmias when they are designed to provide benefit
from the viewpoint of ionic channels and cells. In addition,
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there are no means to identify the patients at high risk of
fatal arrhythmias. It remains difficult to integrate the
elementary data into ine single framework to avoid such
problems.

Accordingly, we made use of the so-called number
crunching ability of computer to integrate data obtained at
various scale levels. We developed a large-scale three-
dimensional simulator of cardiac electrical activity based on
human ventricular geometry and ionic channel models,
derived from experimental data. We tested the clinical utility
of this simulator by examining the relationship between the
site of extrasystoles and the arrhythmogenecity of
ventricular fibrillation.

II. METHODOLOGY

A. Simulator
We developed a simulator, comprising 5.64 million units

[1, 2], each of which behaves according to the ionic channel
model (see below). Each unit corresponds to the cube 0.258
mm in either direction. These units are arranged in a three-
dimensional space (300 x 300 x 300) according to human
ventricular geometry. For normal hearts we assumed that
electrical properties of all units are the same (homogenous)
and isotropic.

B. Ionic channel model
We used the model developed by Luo and Rudy [3] to

express the behavior of each unit. The model consists of the
differential equations between 8 state variables. It
incorporates major ionic currents such as INa, ICa, IKr, IKs, and
IK1. The model is known to reproduce a physiological action
potential duration, voltage, and form.

C. Computation
We used a supercomputer (SX-4/16, 8 of 16 CPU

allocated, NEC, Tokyo, Japan) for the simulation. We
accelerated the performance of the simulator by various
means [2], such as, vectorization, parallel processing,
piecewise linear interpolation of nonlinear functions, and
linearization of the three-dimensional array. A Combination
of these acceleration techniques shortened the calculation
time by a factor of ~3000. It was ~9000 times as fast as a
Pentium III 500 MHz personal computer. The performance
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of the supercomputer was almost maximized judging from
the vectorization ratio of 99.6%, and the mean vector length
of 255.9 for 256-length vector.

D. Examination of the relationship between the site of
extrasystoles and the arrhythmogenecity of ventricular
fibrillation

It is known that electrical properties are inhomogeneous
within the ventricle. Although clinical as well as
experimental findings have revealed that exceedingly large
inhomegeneity contributes to the arrhythmogenecity of
ventricular fibrillation, it is unknown if the geometry of the
media (i.e., myocardial wall) per se affects the
arrhythmogenecity. To explore this, we imposed
programmed extrastimulation from the pacing site of both
the ventricular apex and right ventricular outflow tract and
compared the arrhythmogenecity. With extrastimulation up
to 3 premature contractions, we tried all possible stimulation
patterns, as performed in the clinical induction of
tachyarrhythmias. In an attempt to determine the
mechanisms involved, we repeated a similar programmed
extrastimulation in a more simple form of medium. We
examined a cube, a rectangular form with sides of two
different lengths and one with sides of three different
lengths.

III. RESULTS

Fig. 1 illustrates the activation pattern of ventricles after
the induction of ventricular fibrillation with programmed
extrastimulation; in a similar way we examined the
inducibility of ventricular fibrillation in clinical settings.
Although apical extrastimulation induced fibrillation with
only limited stimulation patterns (left panel),
extrastimulation from the ventricular outflow tract induced
spiral waves more easily. These spiral waves are repeatedly
fragmented into multiple waves and sustained (right panel).

Fig. 1. Activation patterns of ventricles after induction of ventricular
fibrillation with programmed extrastimulation from apex (left),

and from right ventricular outflow tract (right).

Fig. 2. Activation patterns of media after induction of fibrillation with
programmed extrastimulation. Both cube (left) and rectangular form with

sides of three different lengths (right) are examined.

Similar examination in more simple form of media
revealed that spiral waves were not induced in cubes, but in
rectangular form with sides of three different lengths (Fig.
2).

IV. DISCUSSION

We have shown in the present study that fibrillation
inducibility is not uniform between different sites for
imposing extrastimulation. This result can only be obtained
with a simulator with ventricular geometry. Examination in
more simple form of medium indicated that the existence of
a multiplicity of medium length is important in fibrillation
inducibility, though fibrillation persisted only in more
complex geometry as in that of actual ventricles.

Our simulator has several characteristics; it is a large-
scale, three-dimensional, ionic channel-based simulator that
takes ventricular geometry into consideration. Because our
simulator has all these characteristics mentioned, unlike
other simulators, there are advantages for its use in clinical
studies besides the fact that a large-scale, three-dimensional
simulator is necessary to maintain the number of spiral
waves evident in typical ventricular fibrillation.

The use of the realistic ventricular geometry of the
human heart made it possible to induce ventricular
fibrillation with programmed extrastimulation (PES) from a
single pacing site as is used clinically. This is in contrast
with inducing fibrillation with cross-filed stimulation in
simulation in medium of a more simple geometry. This
study indicates that fibrillation can be induced in a near
normal heart without excessive inhomogeneity; this is also
reported clinically as a limitation of PES.

Due to the complex ventricular geometry, the
inducibility of fibrillation was quite different between PES
from different pacing sites, as shown in the Results. Clinical
induction of fibrillation from the right ventricular outflow
tract is considered less specific.

These advantages indicate that our simulator is useful in
supporting a wide range of clinical studies of arrhythmias.



Additionally, because our simulator is based on the ionic
channel model, it is easy to incorporate changes in ionic
channel properties e.g., in long QT syndrome or during
myocardial infarction. Because phenomena such as early
afterdepolarization can only be reproduced with a channel-
based simulator, our simulator is advantageous in that it is
possible to study the contribution of such phenomena on
arrythmogenecity.

V. CONCLUSION

To integrate a large number of data on cardiac electrical
properties, we developed a large-scale, three-dimensional
simulator of cardiac electrical activity, based on human
ventricular geometry and experimentally derived ionic
channel models. This simulator has advantages over
previous ones in that ventricular fibrillation can be induced
with clinical programmed extrastimulation, that fibrillation
can be induced more easily by extrastimulation at right
ventricular outflow tract as occurs clinically, and that it is
possible to examine the contribution of early
afterdepolarization to arrhythmogenecity in patients with
e.g., long QT syndrome. These advantages indicate that our
simulator is useful in supporting a wide range of clinical
studies of arrhythmias.
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